

Research on Apriori Algorithm Optimization of Cloud Computing and Big Data
in Software Engineering

Wang Rui
Yunnan Engineering Vocational College, Anning, Yunnan, 650304

Keywords: Cloud computing; data mining; Apriori algorithm; MapReduce; frequent item sets

Abstract: With the continuous expansion of data information, it is more and more difficult to
extract effective data information from data analysis. Traditional data analysis algorithms can no
longer meet the needs of big data analysis. The rise of Cloud computing provides a new solution to
this problem. This paper studies the Cloud computing technology and data mining and analyses the
Apriori algorithm. Based on its limitations, it proposes an optimization scheme and introduces the
MapReduce model in Cloud computing to achieve parallelization. A MapReduce-based frequent
item set mining method is proposed to improve the efficiency of the algorithm and reduce the
overhead required for algorithm execution.

1. Introduction
In the face of the ever-increasing number of Internet data, it is difficult to accurately obtain the

data required by organizations and individuals on the Internet. Therefore, data mining and designing
of Internet data has become a hot topic [1]. This paper first briefly introduces cloud computing and
data mining technologies, then introduces and analyzes the Apriori algorithm, and proposes an
improved method of the algorithm, namely: Apriori algorithm based on MapReduce, introducing
the cloud computing functions Map and Reduce into the Apriori algorithm, respectively. Algorithm,
designing frequent item set mining methods based on Map/Reduce to improve cloud computing
data mining capabilities [2].

Therefore, it is necessary to combine data mining technology with Internet cloud computer data
technology, and adopt appropriate data mining algorithms on cloud computing platforms to achieve
rapid cloud mining of Internet computing data [3]. This paper uses the Hadoop cloud computing
framework as a data mining platform. This platform is characterized by high reliability, strong fault
tolerance, and strong scalability. It is an open source cloud computing platform.

2. Theoretical part
2.1 Apriori algorithm

Association rules are rules that reflect the relationships and dependencies between things. Apriori
algorithm is one of the more classical algorithms in many association algorithms. The Apriori
algorithm is an association rule algorithm and a breadth-first algorithm [4]. It uses a hierarchical
search strategy from the bottom up to calculate the number of occurrences of the items in the
database, and then cuts the items according to the user-defined minimum support to obtain the
minimum support items. Generate new candidate sets and filter them.

The main property of the Apriori algorithm is that the assumed item set {A, C} is a frequent
itemset, then {A}, {C} is also a frequent itemset; assuming the itemset {D} is not a frequent item
set, then {A, D} And {C, D} is not a frequent item set. That is, the subset of frequent itemsets must
be frequent, and the superset of infrequent itemsets must be infrequent. These properties of Apriori
algorithm can improve the efficiency of generating frequent itemsets to some extent.

The Apriori algorithm can be divided into two steps for discovering association rules: calculating
candidate sets, obtaining frequent itemsets, and constructing strong association rules that satisfy the
minimum required confidence min_conf using frequent itemsets[5]. First of all, during the frequent

2018 5th International Conference on Electrical & Electronics Engineering and Computer Science (ICEEECS 2018)

Copyright © (2018) Francis Academic Press, UK 53

item discovery process, iterative methods are needed to continuously repeat the scan data set. Each
candidate item is counted, compared, and frequently itemsets are generated. Then pruning is
performed to generate the candidate item set process until no more can be found. Large frequent
itemsets. Secondly, an association rule is generated to generate all nonempty subsets for each
frequent item set L. For each nonempty subset S of L, if |L/S|>min_conf, the rule L→LS is output,
and LS is represented in the item set. L removes the S-item set of items.

2.2 MapReduce programming model
MapReduce is a distributed programming model based on cloud computing and big data. It can

perform collection-parallel distribution of data values. The principle of its programming model is to
use an input key-value pair set to generate an output key-value pair set. MapReduce programming is
divided into two phases, Map mapping and Reduce reduction.

The function map splits the input data in the MapReduce model framework, decomposes the
large data set into several small data sets, and allocates the decomposed small data sets to the tasks
of the Map function [6]. The Map function is allocated to the small data sets. The keywords and
data types (ie Key/value pairs) are divided and calculated in parallel, and then the resulting data sets
with the same keywords and data types are classified and passed to the Reduce reduction function
for classification.

The function Reduce reduction reorganizes and merges the small data sets analyzed by the Map
mapping function. The data sets with the same keyword and data type are merged together to form a
new set.

3. MapReduce-based prior algorithm design
3.1 Frequent itemset generation based on MapReduce model

MapReduce model for frequent itemsets mining process shown in Figure 1.
The basic steps are as follows:

Database D

Data subset 1

Site 1

Boolean
matrix 1

Data subset 2

Site 2

Boolean
matrix 2

Data subset N

Site R

Boolean
matrix M

Merge, global
candidate set

Locally
frequent K

itemsets

Locally
frequent K

itemsets

Locally
frequent K

itemsets

Scan D again, compare the minimum support,
determine the global frequent itemsets

……

……

……

……

ReduceReduce

Reduce

Map Map

Figure 1. Flowchart for mining frequent itemsets based on MapReduce model

54

1) First, the transaction database D is divided into a number of data subsets of equal size and
disjointness, and each data subset is sent to R sites in parallel (R≤N); then matrix conversion is
performed on R sites., each generates a Boolean matrix.

2) Finally scan D again, compare with minimum support count min_sup, and finally determine
the global frequent K itemset Lk. It can be seen that, through the idea of dataset segmentation, each
small block calculates the supportability of the candidate set separately, and realizes group statistics.
Therefore, the generation of local frequent K itemsets in each small block is relatively opposite and
thus increases to some extent. The efficiency of the algorithm reduces the communication between
nodes. The number of scans for transaction database D is only two times, which greatly reduces the
overhead required for algorithm execution.

3.2 Algorithm implementation process
The following is a case study to illustrate the feasibility of the improved algorithm. Suppose a

transaction database D has a total of 10 records, as shown in Table 1. The size of the data block can
be set as M=3, and the user-defined minimum support count is 2.

The process of generating frequent item sets is as follows:
Table 1. Data in a transaction database

Transaction ID Item set
T1 ABD
T2 BD
T3 ABC
T4 AD
T5 ABE
T6 ABCE
T7 ADE
T8 ABCD

1) M=3, that is, D is divided into three data blocks, namely D1={T1,T2,T3}, D2={T4,T5,T6},
D3={T7,T8,T9,T10}.

2) The data blocks D1, D2, and D3 are sent to three work sites R1, R2, and R3, respectively.
3) Convert to Boolean matrices, which are M1, M2, and M3, as follows:

1 2 3 4 5 6 7 8 9

1 2 3

1 0 1 1 0 1 0 0 1
1 1 1 0 1 0 0 1 1

, ,0 1 0 0 1 0 1 1 0
1 0 0 1 1 0 1 0 0
1 1 0 0 1 0 0 1 1

T T T T T T T T T
A A A
B B B

M M MC C C
D D D
E E E

     
     
     
     = = =
     
     
     
     

 (1)

First, determine the inner product of the row vectors in their respective matrices. For example, in
the M1 matrix, it can be seen that the added value of the respective row vectors is greater than 0 and
can be preserved; and in the M2 matrix, the vector values of the 4th and 5th rows are added to 0.
Drop directly.

Parse into the <key, value> form, using the Map function to generate a local candidate 1-item set,
details as follows:

R1: <{A},2>, <{B},3>, <{C},1>, <{D},1>, <{E},2>
R2: <{A},2>, <{B},2>, <{C},3>
R3: <{A}, 2>, <{B}, 2>, <{C}, 2>, <{D}, 1>, <{E}, 3>
4) By comparing the local minimum support thresholds, the obtained local frequent 1-item sets

are as follows:
R1: L11={{A}, {B}, {C}, {D}, {E}}
R2: L12={{A}, {B}, {C}}

55

R3: L13={{A}, {B}, {C}, {D}, {E}}

4. Algorithm and performance analysis
The traditional Apriori algorithm needs to scan the transaction database D every time it generates

a Ck. The larger the size of D, the longer the running time. To improve the algorithm, mining
frequent itemsets requires only scanning the transaction database D twice. The number of records,
m is the number of partitions, we can see, in the same connection and pruning case, the greater the
m, the smaller the time required; the row vector of the matrix using the "and" operation, can quickly
calculate support counting, and can reduce the generation of candidate sets, thereby reducing the
number of operations in the pruning process; the second scan only requires comparison screening,
time is greatly reduced.

5. Summary
Internet cloud computing data mining can improve the comprehensive utilization efficiency of

data. As an algorithm of data mining, the Prior algorithm can calculate frequent data sets and mine
data association rules, but its work efficiency is low. The cloud computer system files are stored on
each node and are automatically partitioned. This paper designs data mining algorithms based on
the April algorithm, transforms the data format, introduces the matrix, and combines the frequent
item set mining methods of MapReduce to design the algorithm and optimize Apriori.

References
[1] Guo Z, Chi D, Wu J, et al. A new wind speed forecasting strategy based on the chaotic time
series modelling technique and the Apriori algorithm[J]. Energy Conversion and Management,
2014, 84: 140-151.
[2] Liu H, Tian H, Li Y, et al. Comparison of four Adaboost algorithm based artificial neural
networks in wind speed predictions[J]. Energy Conversion and Management, 2015, 92: 67-81.
[3] Zhang F, Liu M, Gui F, et al. A distributed frequent itemset mining algorithm using Spark for
Big Data analytics[J]. Cluster Computing, 2015, 18(4): 1493-1501.
[4] Niu K, Jiao H, Gao Z, et al. A developed apriori algorithm based on frequent
matrix[C]//Proceedings of the 5th international conference on bioinformatics and computational
biology. ACM, 2017: 55-58.
[5] Harun N A, Makhtar M, Aziz A A, et al. The Application of Apriori Algorithm in Predicting
Flood Areas[J]. International Journal on Advanced Science, Engineering and Information
Technology, 2017, 7(3): 763-769.
[6] Zhu S. Research on data mining of education technical ability training for physical education
students based on Apriori algorithm[J]. Cluster Computing, 2018: 1-8.

56

